Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Int ; 187: 108651, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38648692

RESUMO

BACKGROUND: Air pollution is a recognized risk factor for cardiovascular disease (CVD). Temperature is also linked to CVD, with a primary focus on acute effects. Despite the close relationship between air pollution and temperature, their health effects are often examined separately, potentially overlooking their synergistic effects. Moreover, fewer studies have performed mixture analysis for multiple co-exposures, essential for adjusting confounding effects among them and assessing both cumulative and individual effects. METHODS: We obtained hospitalization records for residents of 14 U.S. states, spanning 2000-2016, from the Health Cost and Utilization Project State Inpatient Databases. We used a grouped weighted quantile sum regression, a novel approach for mixture analysis, to simultaneously evaluate cumulative and individual associations of annual exposures to four grouped mixtures: air pollutants (elemental carbon, ammonium, nitrate, organic carbon, sulfate, nitrogen dioxide, ozone), differences between summer and winter temperature means and their long-term averages during the entire study period (i.e., summer and winter temperature mean anomalies), differences between summer and winter temperature standard deviations (SD) and their long-term averages during the entire study period (i.e., summer and winter temperature SD anomalies), and interaction terms between air pollutants and summer and winter temperature mean anomalies. The outcomes are hospitalization rates for four prevalent CVD subtypes: ischemic heart disease, cerebrovascular disease, heart failure, and arrhythmia. RESULTS: Chronic exposure to air pollutant mixtures was associated with increased hospitalization rates for all CVD subtypes, with heart failure being the most susceptible subtype. Sulfate, nitrate, nitrogen dioxide, and organic carbon posed the highest risks. Mixtures of the interaction terms between air pollutants and temperature mean anomalies were associated with increased hospitalization rates for all CVD subtypes. CONCLUSIONS: Our findings identified critical pollutants for targeted emission controls and suggested that abnormal temperature changes chronically affected cardiovascular health by interacting with air pollution, not directly.

2.
BMJ ; 384: e076939, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383041

RESUMO

OBJECTIVE: To estimate exposure-response associations between chronic exposure to fine particulate matter (PM2.5) and risks of the first hospital admission for major cardiovascular disease (CVD) subtypes. DESIGN: Population based cohort study. SETTING: Contiguous US. PARTICIPANTS: 59 761 494 Medicare fee-for-service beneficiaries aged ≥65 years during 2000-16. Calibrated PM2.5 predictions were linked to each participant's residential zip code as proxy exposure measurements. MAIN OUTCOME MEASURES: Risk of the first hospital admission during follow-up for ischemic heart disease, cerebrovascular disease, heart failure, cardiomyopathy, arrhythmia, valvular heart disease, thoracic and abdominal aortic aneurysms, or a composite of these CVD subtypes. A causal framework robust against confounding bias and bias arising from errors in exposure measurements was developed for exposure-response estimations. RESULTS: Three year average PM2.5 exposure was associated with increased relative risks of first hospital admissions for ischemic heart disease, cerebrovascular disease, heart failure, cardiomyopathy, arrhythmia, and thoracic and abdominal aortic aneurysms. For composite CVD, the exposure-response curve showed monotonically increased risk associated with PM2.5: compared with exposures ≤5 µg/m3 (the World Health Organization air quality guideline), the relative risk at exposures between 9 and 10 µg/m3, which encompassed the US national average of 9.7 µg/m3 during the study period, was 1.29 (95% confidence interval 1.28 to 1.30). On an absolute scale, the risk of hospital admission for composite CVD increased from 2.59% with exposures ≤5 µg/m3 to 3.35% at exposures between 9 and 10 µg/m3. The effects persisted for at least three years after exposure to PM2.5. Age, education, accessibility to healthcare, and neighborhood deprivation level appeared to modify susceptibility to PM2.5. CONCLUSIONS: The findings of this study suggest that no safe threshold exists for the chronic effect of PM2.5 on overall cardiovascular health. Substantial benefits could be attained through adherence to the WHO air quality guideline.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Aneurisma da Aorta Abdominal , Cardiomiopatias , Doenças Cardiovasculares , Transtornos Cerebrovasculares , Insuficiência Cardíaca , Isquemia Miocárdica , Humanos , Idoso , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Doenças Cardiovasculares/etiologia , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Medicare , Estudos de Coortes , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Insuficiência Cardíaca/induzido quimicamente , Isquemia Miocárdica/complicações , Arritmias Cardíacas/complicações , Transtornos Cerebrovasculares/complicações , Hospitais , Exposição Ambiental/efeitos adversos
3.
Nat Commun ; 15(1): 1518, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374182

RESUMO

The association between PM2.5 and non-respiratory infections is unclear. Using data from Medicare beneficiaries and high-resolution datasets of PM2.5 and its constituents across 39,296 ZIP codes in the U.S between 2000 and 2016, we investigated the associations between annual PM2.5, PM2.5 constituents, source-specific PM2.5, and hospital admissions from non-respiratory infections. Each standard deviation (3.7-µg m-3) increase in PM2.5 was associated with a 10.8% (95%CI 10.8-11.2%) increase in rate of hospital admissions from non-respiratory infections. Sulfates (30.8%), Nickel (22.5%) and Copper (15.3%) contributed the largest weights in the observed associations. Each standard deviation increase in PM2.5 components sourced from oil combustion, coal burning, traffic, dirt, and regionally transported nitrates was associated with 14.5% (95%CI 7.6-21.8%), 18.2% (95%CI 7.2-30.2%), 20.6% (95%CI 5.6-37.9%), 8.9% (95%CI 0.3-18.4%) and 7.8% (95%CI 0.6-15.5%) increases in hospital admissions from non-respiratory infections. Our results suggested that non-respiratory infections are an under-appreciated health effect of PM2.5.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Humanos , Estados Unidos/epidemiologia , Material Particulado/efeitos adversos , Material Particulado/análise , Medicare , Poeira , Carvão Mineral , Hospitais , Poluição do Ar/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Exposição Ambiental/análise
4.
Environ Res ; 245: 118092, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38163540

RESUMO

BACKGROUND: Previous studies have linked noise exposure with adverse cardiovascular events. However, evidence remains inconsistent, and most previous studies only focused on traffic noise, excluding other anthropogenic sources like constructions, industrial process and commercial activities. Additionally, few studies have been conducted in the U.S. or evaluated the non-linear exposure-response relationships. METHODS: We conducted a relative incidence analysis study using all cardiovascular diseases mortality as cases (n = 936,019) and external causes mortality (n = 232,491) as contrast outcomes. Mortality records geocoded at residential addresses were obtained from five U.S. states (Indiana, 2007; Kansas, 2007-2009, Missouri, 2010-2019, Ohio, 2007-2013, Texas, 2007-2016). Time-invariant long-term noise exposure was obtained from a validated model developed based on acoustical measurements across 2000-2014. Noises from both natural sources (natural activities, including animals, insects, winds, water flows, thunder, etc.) and anthropogenic sources (human activities, including transportation, industrial activities, community facilities & infrastructures, commercial activities, entertainments, etc.) were included. We used daytime and nighttime total anthropogenic noise & day-night average sound pressure level combining natural and anthropogenic sources as exposures. Logistic regression models were fit controlling for Census tract-level & individual-level characteristics. We examined potential modification by sex by interaction terms and potential non-linear associations by thin plate spline terms. RESULTS: We observed positive associations for daytime anthropogenic L50 (sound level exceeded 50% of time) noise (10-dBA OR = 1.047, 95%CI 1.025-1.069), nighttime anthropogenic L50 noise (10-dBA OR = 1.061, 95%CI 1.033-1.091) in a two-exposure-term model, and overall Ldn (day-night average) sound pressure level (10-dBA OR = 1.064, 95%CI 1.040-1.089) in single-exposure-term model. Females were more susceptible to all three exposures. All exposures showed monotonic positive associations with cardiovascular mortality up to certain thresholds around 45-55 dBA, with a generally flattened or decreasing trend beyond those thresholds. CONCLUSIONS: Both daytime anthropogenic and nighttime anthropogenic noises were associated with cardiovascular disease mortality, and associations were stronger in females.


Assuntos
Doenças Cardiovasculares , Humanos , Feminino , Doenças Cardiovasculares/epidemiologia , Exposição Ambiental/análise , Ruído , Meios de Transporte , Estudos de Coortes
5.
Psychol Med ; 54(5): 962-970, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37706289

RESUMO

BACKGROUND: Early-life stressful experiences are associated with increased risk of adverse psychological outcomes in later life. However, much less is known about associations between early-life positive experiences, such as participation in cognitively stimulating activities, and late-life mental health. We investigated whether greater engagement in cognitively stimulating activities in early life is associated with lower risk of depression and anxiety in late life. METHODS: We surveyed former participants of the St. Louis Baby Tooth study, between 22 June 2021 and 25 March 2022 to collect information on participants' current depression/anxiety symptoms and their early-life activities (N = 2187 responded). A composite activity score was created to represent the early-life activity level by averaging the frequency of self-reported participation in common cognitively stimulating activities in participants' early life (age 6, 12, 18), each rated on a 1 (least frequent) to 5 (most frequent) point scale. Depression/anxiety symptoms were measured by Patient Health Questionnaire (PHQ-9) and Generalized Anxiety Disorder Screener (GAD-7). We used logistic regressions to estimate odds ratios (OR) and 95% confidence intervals (CI) of outcome risk associated with frequency of early-life activity. RESULTS: Each one-point increase in the early-life composite cognitive activity score was associated with an OR of 0.54 (95% CI 0.38-0.77) for late-life depression and an OR of 0.94 (95% CI 0.61-1.43) for late-life anxiety, adjusting for age, sex, race, parental education, childhood family structure, and socioeconomic status. CONCLUSIONS: More frequent participation in cognitively stimulating activities during early life was associated with reduced risk of late-life depression.


Assuntos
Ansiedade , Depressão , Humanos , Criança , Depressão/epidemiologia , Depressão/psicologia , Ansiedade/epidemiologia , Ansiedade/psicologia , Transtornos de Ansiedade/epidemiologia , Saúde Mental , Pais
6.
Environ Pollut ; 344: 123258, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38159634

RESUMO

Exposure to light at night (LAN) may influence sleep timing and regularity. Here, we test whether greater light exposure during sleep (LEDS) is bidirectionally associated with greater irregularity in sleep onset timing in a large cohort of older adults in cross-sectional and short-term longitudinal (days) analyses. Light exposure and activity patterns, measured via wrist-worn actigraphy (ActiWatch Spectrum), were analyzed in 1933 participants with 6+ valid days of data in the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5 Sleep Study. Summary measures of LEDS averaged across nights were evaluated in linear and logistic regression analyses to test the association with standard deviation (SD) in sleep onset timing (continuous variable) and irregular sleep onset timing (SD > 90 min, binary). Night-to-night associations between LEDS and absolute differences in nightly sleep onset timing were also evaluated with distributed lag non-linear models and mixed models. In between-individual linear and logistic models adjusted for demographic, health, and seasonal factors, every 5-lux unit increase in LEDS was associated with a 7.8-min increase in sleep onset SD (ß = 0.13 h, 95%CI:0.09-0.17) and 32% greater odds (OR = 1.32, 95%CI:1.17-1.50) of irregular sleep onset. In within-individual night-to-night mixed model analyses, every 5-lux unit increase in LEDS the night prior was associated with a 2.2-min greater deviation of sleep onset the next night (ß = 0.036 h, p < 0.05). Conversely, every 1-h increase in sleep deviation was associated with a 0.35-lux increase in future LEDS (ß = 0.348 lux, p < 0.05). LEDS was associated with greater irregularity in sleep onset in between-individual analyses and subsequent deviation in sleep timing in within-individual analyses, supporting a role for LEDS in irregular sleep onset timing. Greater deviation in sleep onset was also associated with greater future LEDS, suggesting a bidirectional relationship. Maintaining a dark sleeping environment and preventing LEDS may promote sleep regularity and following a regular sleep schedule may limit LEDS.


Assuntos
Aterosclerose , Sono , Humanos , Idoso , Estudos Transversais , Aterosclerose/epidemiologia , Ritmo Circadiano
7.
Environ Int ; 181: 108266, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37847981

RESUMO

BACKGROUND: Despite strong evidence of the association of fine particulate matter (PM2.5) exposure with an increased risk of lung cancer mortality, few studies had investigated associations of multiple pollutants simultaneously, or with incidence, or using causal methods. Disparities were also understudied. OBJECTIVES: We investigated long-term effects of PM2.5, nitrogen dioxide (NO2), warm-season ozone, and particle radioactivity (PR) exposures on lung cancer incidence in a nationwide cohort. METHODS: We conducted a cohort study with Medicare beneficiaries (aged ≥ 65 years) continuously enrolled in the fee-for-service program in the contiguous US from 2001 to 2016. Air pollution exposure was averaged across three years and assigned based on ZIP code of residence. We fitted Cox proportional hazards models to estimate the hazard ratio (HR) for lung cancer incidence, adjusted for individual- and neighborhood-level confounders. As a sensitivity analysis, we evaluated the causal relationships using inverse probability weights. We further assessed effect modifications by individual- and neighborhood-level covariates. RESULTS: We identified 166,860 lung cancer cases of 12,429,951 studied beneficiaries. In the multi-pollutant model, PM2.5 and NO2 exposures were statistically significantly associated with increased lung cancer incidence, while PR was marginally significantly associated. Specifically, the HR was 1.008 (95% confidence interval [CI]: 1.005, 1.011) per 1-µg/m3 increase in PM2.5, 1.013 (95% CI: 1.012, 1.013) per 1-ppb increase in NO2, and 1.005 (0.999, 1.012) per 1-mBq/m3 increase in PR. At low exposure levels, all pollutants were associated with increased lung cancer incidence. Men, older individuals, Blacks, and residents of low-income neighborhoods experienced larger effects of PM2.5 and PR. DISCUSSION: Long-term PM2.5, NO2, and PR exposures were independently associated with increased lung cancer incidence among the national elderly population. Low-exposure analysis indicated that current national standards for PM2.5 and NO2 were not restrictive enough to protect public health, underscoring the need for more stringent air quality regulations.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Neoplasias Pulmonares , Masculino , Humanos , Idoso , Estados Unidos/epidemiologia , Medicare , Poluentes Atmosféricos/análise , Estudos de Coortes , Incidência , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/induzido quimicamente , Dióxido de Nitrogênio/análise , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/análise , Poluentes Ambientais/análise
8.
medRxiv ; 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37873226

RESUMO

Objective: Exposure to light at night (LAN) may influence sleep timing and regularity. Here, we test whether greater light exposure during sleep (LEDS) associates with greater irregularity in sleep onset timing in a large cohort of older adults. Methods: Light exposure and activity patterns, measured via wrist-worn actigraphy (ActiWatch Spectrum), were analyzed in 1,933 participants with 6+ valid days of data in the Multi-Ethnic Study of Atherosclerosis (MESA) Exam 5 Sleep Study. Summary measures of LEDS averaged across nights were evaluated in linear and logistic regression analyses to test the association with standard deviation (SD) in sleep onset timing (continuous variable) and irregular sleep onset timing (SD≥1.36 hours, binary). Night-to-night associations between LEDS and absolute differences in nightly sleep onset timing were also evaluated with distributed lag non-linear models and mixed models. Results: In between-individual linear and logistic models adjusted for demographic, health, and seasonal factors, every 5-lux unit increase in LEDS was associated with an increase of 7.8 minutes in sleep onset SD (ß=0.13 hours, 95%CI:0.09-0.17) and 40% greater odds (OR=1.40, 95%CI:1.24-1.60) of irregular sleep onset. In within-individual night-to-night mixed model analyses, every 5-lux unit increase in LEDS the night prior (lag0) was associated with a 2.2-minute greater deviation of sleep onset the next night (ß=0.036 hours, p<0.05). Conversely, every 1-hour increase in sleep deviation (lag0) was associated with a 0.35-lux increase in future LEDS (ß=0.347 lux, p<0.05). Conclusion: LEDS was associated with greater irregularity in sleep onset in between-individual analyses and subsequent deviation in sleep timing in within-individual analyses, supporting a role for LEDS in exacerbating irregular sleep onset timing. Greater deviation in sleep onset was also associated with greater future LEDS, suggesting a bidirectional relationship. Maintaining a dark sleeping environment and preventing LEDS may promote sleep regularity and following a regular sleep schedule may limit LEDS.

9.
J Am Heart Assoc ; 12(18): e029428, 2023 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-37702054

RESUMO

Background Air pollution has been recognized as an untraditional risk factor for myocardial infarction (MI). However, the MI risk attributable to long-term exposure to fine particulate matter ≤2.5 µm in aerodynamic diameter (PM2.5) is unclear, especially in younger populations, and few studies have represented the general population or had power to examine comorbidities. Methods and Results We applied the difference-in-differences approach to estimate the relationship between annual PM2.5 exposure and hospitalizations for MI among US residents and further identified potential susceptible subpopulations. All hospital admissions for MI in 10 US states over the period 2002 to 2016 were obtained from the Healthcare Cost and Utilization Project State Inpatient Database. In total, 1 914 684 MI hospital admissions from 8106 zip codes were included in this study. We observed a 1.35% (95% CI, 1.11-1.59) increase in MI hospitalization rate for 1-µg/m3 increase in annual PM2.5 exposure. The estimate was robust to adjustment for surface pressure, relative humidity, and copollutants. In the population exposed to ≤12 µg/m3, there was a larger increment of 2.17% (95% CI, 1.79-2.56) in hospitalization rate associated with 1-µg/m3 increase in PM2.5. Young people (0-34 years of age) and elderly people (≥75 years of age) were the 2 most susceptible age groups. Residents living in more densely populated or poorer areas and individuals with comorbidities were observed to be at a greater risk. Conclusions This study indicates long-term residential exposure to PM2.5 could increase risk of MI among the general US population, people with comorbidities, and poorer individuals. The association persists below current standards.


Assuntos
Poluição do Ar , Infarto do Miocárdio , Idoso , Humanos , Adolescente , Infarto do Miocárdio/epidemiologia , Bases de Dados Factuais , Hospitalização , Material Particulado/efeitos adversos
10.
Environ Epidemiol ; 7(4): e265, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37545804

RESUMO

Epidemiologic evidence on the relationships between air pollution and the risks of primary cancers other than lung cancer remained largely lacking. We aimed to examine associations of 10-year exposures to fine particulate matter (PM2.5) and nitrogen dioxide (NO2) with risks of breast, prostate, colorectal, and endometrial cancers. Methods: For each cancer, we constructed a separate cohort among the national Medicare beneficiaries during 2000 to 2016. We simultaneously examined the additive associations of six exposures, namely, moving average exposures to PM2.5 and NO2 over the year of diagnosis and previous 2 years, previous 3 to 5 years, and previous 6 to 10 years, with the risk of first cancer diagnosis after 10 years of follow-up, during which there was no cancer diagnosis. Results: The cohorts included 2.2 to 6.5 million subjects for different cancers. Exposures to PM2.5 and NO2 were associated with increased risks of colorectal and prostate cancers but were not associated with endometrial cancer risk. NO2 was associated with a decreased risk of breast cancer, while the association for PM2.5 remained inconclusive. At exposure levels below the newly updated World Health Organization Air Quality Guideline, we observed substantially larger associations between most exposures and the risks of all cancers, which were translated to hundreds to thousands new cancer cases per year within the cohort per unit increase in each exposure. Conclusions: These findings suggested substantial cancer burden was associated with exposures to PM2.5 and NO2, emphasizing the urgent need for strategies to mitigate air pollution levels.

11.
Environ Health ; 22(1): 54, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550674

RESUMO

BACKGROUND: Epigenome-wide association studies of ambient fine particulate matter (PM2.5) have been reported. However, few have examined PM2.5 components (PMCs) and sources or included repeated measures. The lack of high-resolution exposure measurements is the key limitation. We hypothesized that significant changes in DNA methylation might vary by PMCs and the sources. METHODS: We predicted the annual average of 14 PMCs using novel high-resolution exposure models across the contiguous U.S., between 2000-2018. The resolution was 50 m × 50 m in the Greater Boston Area. We also identified PM2.5 sources using positive matrix factorization. We repeatedly collected blood samples and measured leukocyte DNAm with the Illumina HumanMethylation450K BeadChip in the Normative Aging Study. We then used median regression with subject-specific intercepts to estimate the associations between long-term (one-year) exposure to PMCs / PM2.5 sources and DNA methylation at individual cytosine-phosphate-guanine CpG sites. Significant probes were identified by the number of independent degrees of freedom approach, using the number of principal components explaining > 95% of the variation of the DNA methylation data. We also performed regional and pathway analyses to identify significant regions and pathways. RESULTS: We included 669 men with 1,178 visits between 2000-2013. The subjects had a mean age of 75 years. The identified probes, regions, and pathways varied by PMCs and their sources. For example, iron was associated with 6 probes and 6 regions, whereas nitrate was associated with 15 probes and 3 regions. The identified pathways from biomass burning, coal burning, and heavy fuel oil combustion sources were associated with cancer, inflammation, and cardiovascular diseases, whereas there were no pathways associated with all traffic. CONCLUSIONS: Our findings showed that the effects of PM2.5 on DNAm varied by its PMCs and sources.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Masculino , Humanos , Idoso , Metilação de DNA , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Epigenoma , Material Particulado/efeitos adversos , Material Particulado/análise , Poeira/análise , Envelhecimento/genética , Carvão Mineral , Poluição do Ar/efeitos adversos , Poluição do Ar/análise
12.
Environ Health Perspect ; 131(7): 77002, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37404028

RESUMO

BACKGROUND: Seasonal temperature variability remains understudied and may be modified by climate change. Most temperature-mortality studies examine short-term exposures using time-series data. These studies are limited by regional adaptation, short-term mortality displacement, and an inability to observe longer-term relationships in temperature and mortality. Seasonal temperature and cohort analyses allow the long-term effects of regional climatic change on mortality to be analyzed. OBJECTIVES: We aimed to carry out one of the first investigations of seasonal temperature variability and mortality across the contiguous United States. We also investigated factors that modify this association. Using adapted quasi-experimental methods, we hoped to account for unobserved confounding and to investigate regional adaptation and acclimatization at the ZIP code level. METHODS: We examined the mean and standard deviation (SD) of daily temperature in the warm (April-September) and cold (October-March) season in the Medicare cohort from 2000 to 2016. This cohort comprised 622,427,230 y of person-time in all adults over the age of 65 y from 2000 to 2016. We used daily mean temperature obtained from gridMET to develop yearly seasonal temperature variables for each ZIP code. We used an adapted difference-in-difference approach model with a three-tiered clustering approach and meta-analysis to observe the relationship between temperature variability and mortality within ZIP codes. Effect modification was assessed with stratified analyses by race and population density. RESULTS: For every 1°C increase in the SD of warm and cold season temperature, the mortality rate increased by 1.54% [95% confidence interval (CI): 0.73%, 2.15%] and 0.69% (95% CI: 0.22%, 1.15%) respectively. We did not see significant effects for seasonal mean temperatures. Participants who were classified by Medicare into an "other" race group had smaller effects than those classified as White for Cold and Cold SD and areas with lower population density had larger effects for Warm SD. DISCUSSION: Warm and cold season temperature variability were significantly associated with increased mortality rates in U.S. individuals over the age of 65 y, even after controlling for seasonal temperature averages. Warm and cold season mean temperatures showed null effects on mortality. Cold SD had a larger effect size for those who were in the racial subgroup other, whereas Warm SD was more harmful for those living in lower population density areas. This study adds to the growing calls for urgent climate mitigation and environmental health adaptation and resiliency. https://doi.org/10.1289/EHP11588.


Assuntos
Temperatura Baixa , Medicare , Adulto , Humanos , Idoso , Estados Unidos/epidemiologia , Temperatura , Estações do Ano , Fatores de Tempo , Mortalidade , Temperatura Alta
13.
JAMA Netw Open ; 6(2): e2253668, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36763364

RESUMO

Importance: Emerging evidence has suggested harmful associations of air pollutants with neurodegenerative diseases among older adults. However, little is known about outcomes regarding late-life mental disorders, such as geriatric depression. Objective: To investigate if long-term exposure to air pollution is associated with increased risk of late-life depression diagnosis among older adults in the US. Design, Setting, and Participants: This population-based longitudinal cohort study consisted of US Medicare enrollees older than 64 years. Data were obtained from the US Centers for Medicare and Medicaid Services Chronic Conditions Warehouse. The participants were continuously enrolled in the Fee-for-Service program and both Medicare Part A and Part B. After the 5-year washout period at entry, a total of 8 907 422 unique individuals were covered over the study period of 2005 to 2016, who contributed to 1 526 690 late-onset depression diagnoses. Data analyses were performed between March 2022 and November 2022. Exposures: The exposures consisted of residential long-term exposure to fine particulate matter (PM2.5), measured in micrograms per cubic meter; nitrogen dioxide (NO2), measured in parts per billion; and ozone (O3), measured in parts per billion. Main Outcomes and Measures: Late-life depression diagnoses were identified via information from all available Medicare claims (ie, hospital inpatient, skilled nursing facility, home health agency, hospital outpatient, and physician visits). Date of the first occurrence was obtained. Hazard ratios and percentage change in risk were estimated via stratified Cox proportional hazards models accounting for climate coexposures, neighborhood greenness, socioeconomic conditions, health care access, and urbanicity level. Results: A total of 8 907 422 Medicare enrollees were included in this study with 56.8% being female individuals and 90.2% being White individuals. The mean (SD) age at entry (after washout period) was 73.7 (4.8) years. Each 5-unit increase in long-term mean exposure to PM2.5, NO2, and O3 was associated with an adjusted percentage increase in depression risk of 0.91% (95% CI, 0.02%-1.81%), 0.61% (95% CI, 0.31%- 0.92%), and 2.13% (95% CI, 1.63%-2.64%), respectively, based on a tripollutant model. Effect size heterogeneity was found among subpopulations by comorbidity condition and neighborhood contextual backgrounds. Conclusions and Relevance: In this cohort study among US Medicare enrollees, harmful associations were observed between long-term exposure to air pollution and increased risk of late-life depression diagnosis.


Assuntos
Poluição do Ar , Ozônio , Humanos , Feminino , Idoso , Estados Unidos/epidemiologia , Masculino , Dióxido de Nitrogênio/efeitos adversos , Estudos de Coortes , Depressão/epidemiologia , Depressão/etiologia , Estudos Longitudinais , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Medicare , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Material Particulado/efeitos adversos , Material Particulado/análise , Ozônio/efeitos adversos , Ozônio/análise
14.
Environ Res ; 216(Pt 2): 114636, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36283440

RESUMO

BACKGROUND: The physical environmental risk factors for psychotic disorders are poorly understood. This study aimed to examine the associations between exposure to ambient air pollution, climate measures and risk of hospitalization for psychotic disorders and uncover potential disparities by demographic, community factors. METHODS: Using Health Cost and Utilization Project (HCUP) State Inpatient Databases (SIDs), we applied zero-inflated negative binomial regression to obtain relative risks of hospitalization due to psychotic disorders associated with increases in residential exposure to ambient air pollution (fine particulate matter, PM2.5; nitrogen dioxide, NO2), temperature and cumulative precipitation. The analysis covered all-age residents in eight U.S. states over the period of 2002-2016. We additionally investigated modification by age, sex and area-level poverty, percent of blacks and Hispanics. RESULTS: Over the study period and among the covered areas, we identified 1,211,100 admissions due to psychotic disorders. For each interquartile (IQR) increase in exposure to PM2.5 and NO2, we observed a relative risk (RR) of 1.11 (95% confidence interval (CI) = 1.09, 1.13) and 1.27 (95% CI = 1.24, 1.31), respectively. For each 1 °C increase of temperature, the RR was 1.03 (95% CI = 1.03, 1.04). Males were more affected by NO2. Older age residents (≥30 yrs) were more sensitive to PM2.5 and temperature. Population living in economically disadvantaged areas were more affected by air pollution. CONCLUSIONS: The study suggests that living in areas with higher levels of air pollutants and ambient temperature could contribute to additional risk of inpatient care for individuals with psychotic disorders.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Transtornos Psicóticos , Masculino , Humanos , Dióxido de Nitrogênio/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/análise , Hospitalização , Transtornos Psicóticos/epidemiologia , Hospitais , Exposição Ambiental/análise
15.
Environ Res ; 217: 114797, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36379232

RESUMO

BACKGROUND: Environmental metal exposures have been associated with multiple deleterious health endpoints. DNA methylation (DNAm) may provide insight into the mechanisms underlying these relationships. Toenail metals are non-invasive biomarkers, reflecting a medium-term time exposure window. OBJECTIVES: This study examined variation in leukocyte DNAm and toenail arsenic (As), cadmium (Cd), lead (Pb), manganese (Mn), and mercury (Hg) among elderly men in the Normative Aging Study, a longitudinal cohort. METHODS: We repeatedly collected samples of blood and toenail clippings. We measured DNAm in leukocytes with the Illumina HumanMethylation450 K BeadChip. We first performed median regression to evaluate the effects of each individual toenail metal on DNAm at three levels: individual cytosine-phosphate-guanine (CpG) sites, regions, and pathways. Then, we applied a Bayesian kernel machine regression (BKMR) to assess the joint and individual effects of metal mixtures on DNAm. Significant CpGs were identified using a multiple testing correction based on the independent degrees of freedom approach for correlated outcomes. The approach considers the effective degrees of freedom in the DNAm data using the principal components that explain >95% variation of the data. RESULTS: We included 564 subjects (754 visits) between 1999 and 2013. The numbers of significantly differentially methylated CpG sites, regions, and pathways varied by metals. For example, we found six significant pathways for As, three for Cd, and one for Mn. The As-associated pathways were associated with cancer (e.g., skin cancer) and cardiovascular disease, whereas the Cd-associated pathways were related to lung cancer. Metal mixtures were also associated with 47 significant CpG sites, as well as pathways, mainly related to cancer and cardiovascular disease. CONCLUSIONS: This study provides an approach to understanding the potential epigenetic mechanisms underlying observed relations between toenail metals and adverse health endpoints.


Assuntos
Arsênio , Doenças Cardiovasculares , Mercúrio , Masculino , Humanos , Idoso , Metilação de DNA , Cádmio , Epigenoma , Unhas , Teorema de Bayes , Metais/toxicidade , Envelhecimento , Arsênio/toxicidade , Leucócitos , Manganês
16.
Environ Health ; 21(1): 81, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36068579

RESUMO

RATIONALE: Studies examining the association of short-term air pollution exposure and daily deaths have typically been limited to cities and used citywide average exposures, with few using causal models. OBJECTIVES: To estimate the associations between short-term exposures to fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) and all-cause and cause-specific mortality in multiple US states using census tract or address exposure and including rural areas, using a double negative control analysis. METHODS: We conducted a time-stratified case-crossover study examining the entire population of seven US states from 2000-2015, with over 3 million non-accidental deaths. Daily predictions of PM2.5, O3, and NO2 at 1x1 km grid cells were linked to mortality based on census track or residential address. For each pollutant, we used conditional logistic regression to quantify the association between exposure and the relative risk of mortality conditioning on meteorological variables, other pollutants, and using double negative controls. RESULTS: A 10 µg/m3 increase in PM2.5 exposure at the moving average of lag 0-2 day was significantly associated with a 0.67% (95%CI: 0.34-1.01%) increase in all-cause mortality. 10 ppb increases in NO2 or O3 exposure at lag 0-2 day were marginally associated with and 0.19% (95%CI: -0.01-0.38%) and 0.20 (95% CI-0.01, 0.40), respectively. The adverse effects of PM2.5 persisted when pollution levels were restricted to below the current global air pollution standards. Negative control models indicated little likelihood of omitted confounders for PM2.5, and mixed results for the gases. PM2.5 was also significantly associated with respiratory mortality and cardiovascular mortality. CONCLUSIONS: Short-term exposure to PM2.5 and possibly O3 and NO2 are associated with increased risks for all-cause mortality. Our findings delivered evidence that risks of death persisted at levels below currently permissible.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Ambientais , Ozônio , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos Cross-Over , Exposição Ambiental/efeitos adversos , Exposição Ambiental/análise , Poluentes Ambientais/análise , Humanos , Modelos Logísticos , Dióxido de Nitrogênio/efeitos adversos , Dióxido de Nitrogênio/análise , Ozônio/análise , Material Particulado/análise
17.
Sci Total Environ ; 849: 157934, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35952868

RESUMO

BACKGROUND: There is a lack of evidence for the associations between atmospheric particle components exposure and psychiatric health. We aimed to identify the most toxic particle component(s) and source(s) related with psychiatric illness. METHODS: Using Health Cost and Utilization Project (HCUP) State Inpatient Databases (SIDs), we analyzed the relative risk (RR) of psychiatric hospitalization associated with increased residential exposure to 14 particle components (Zn, V, Si, Pb, Ni, K, Fe, Cu, Ca, Br, sulfate (SO42-), nitrate (NO3-), organic carbon (OC), and elemental carbon (EC)). We covered the residents of eight U.S. states, who contributed to 5,012,041 psychiatric admissions over 2002-2018. Single component models were conducted via fitting zero-inflated negative binomial regression for each component with aggregated counts of total psychiatric hospitalizations per ZIP code per year as dependent variable. We used Nonnegative Matrix Factorization (NMF) to identify particle source factors and obtained the source-specific estimates. Generalized Weighted Quantile Sum (gWQS) Regression was applied to obtain an overall mixture effect. Separate but similar models were fitted for different age groups (<30 yrs. vs. ≥ 30 yrs) and psychiatric illness sub-categories to assess effect heterogeneity. RESULTS: Sulfate, Fe, Pb and Zn were associated with the largest risk increases in single-component models. The biggest harmful associations were observed for metal industry source (high loadings of Pb and sulfate). For one quartile increase in components mixture score, we observed an adjusted RR of 1.24 (95 % CI, 1.21-1.26). Older population were more affected. We also observed higher increase in bipolar and psychotic admission risk for increased components source and mixture level. CONCLUSION: Living in areas with higher levels of particle components was associated with increased risk of psychiatric hospitalization among the residents in eight U.S. states. Certain components (i.e. Pb, sulfate) and sources (metal industry) were the most related.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adulto , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Carbono , Monitoramento Ambiental , Hospitalização , Humanos , Chumbo , Nitratos , Tamanho da Partícula , Material Particulado/análise , Sulfatos
18.
Environ Health Perspect ; 130(7): 77006, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35904519

RESUMO

BACKGROUND: Exposure measurement error is a central concern in air pollution epidemiology. Given that studies have been using ambient air pollution predictions as proxy exposure measures, the potential impact of exposure error on health effect estimates needs to be comprehensively assessed. OBJECTIVES: We aimed to generate wide-ranging scenarios to assess direction and magnitude of bias caused by exposure errors under plausible concentration-response relationships between annual exposure to fine particulate matter [PM ≤2.5µm in aerodynamic diameter (PM2.5)] and all-cause mortality. METHODS: In this simulation study, we use daily PM2.5 predictions at 1-km2 spatial resolution to estimate annual PM2.5 exposures and their uncertainties for ZIP Codes of residence across the contiguous United States between 2000 and 2016. We consider scenarios in which we vary the error type (classical or Berkson) and the true concentration-response relationship between PM2.5 exposure and mortality (linear, quadratic, or soft-threshold-i.e., a smooth approximation to the hard-threshold model). In each scenario, we generate numbers of deaths using error-free exposures and confounders of concurrent air pollutants and neighborhood-level covariates and perform epidemiological analyses using error-prone exposures under correct specification or misspecification of the concentration-response relationship between PM2.5 exposure and mortality, adjusting for the confounders. RESULTS: We simulate 1,000 replicates of each of 162 scenarios investigated. In general, both classical and Berkson errors can bias the concentration-response curve toward the null. The biases remain small even when using three times the predicted uncertainty to generate errors and are relatively larger at higher exposure levels. DISCUSSION: Our findings suggest that the causal determination for long-term PM2.5 exposure and mortality is unlikely to be undermined when using high-resolution ambient predictions given that the estimated effect is generally smaller than the truth. The small magnitude of bias suggests that epidemiological findings are relatively robust against the exposure error. In practice, the use of ambient predictions with a finer spatial resolution will result in smaller bias. https://doi.org/10.1289/EHP10389.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Material Particulado/análise , Estados Unidos
19.
Lancet Planet Health ; 6(4): e331-e341, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35397221

RESUMO

BACKGROUND: Little is known about the associations between ambient environmental exposures and the risk of acute episodes of psychiatric disorders. We aimed to estimate the link between short-term exposure to atmospheric pollutants, temperature, and acute psychiatric hospital admissions in adults aged 65 years and older in the USA. METHODS: For this study, we included all people (aged ≥65 years) enrolled in the Medicare programme in the USA who had an emergency or urgent hospital admission for a psychiatric disorder recorded between Jan 31, 2000, and Dec 31, 2016. We applied a case-crossover design to study the associations between short-term exposure to air pollution (fine particulate matter [PM2·5], ozone, and nitrogen dioxide [NO2]), ambient temperature, and the risk of acute hospital admissions for depression, schizophrenia, and bipolar disorder in this population. The percentage change in the risk of hospital admission and annual absolute risk differences were estimated. FINDINGS: For each 5°C increase in short-term exposure to cold season temperature, the relative risk of acute hospital admission increased by 3·66% (95% CI 3·06-4·26) for depression, by 3·03% (2·04-4·02) for schizophrenia, and by 3·52% (2·38-4·68) for bipolar disorder in the US Medicare population. Increased short-term exposure to PM2·5 and NO2 was also associated with a significant increase in the risk of acute hospital admissions for psychiatric disorders. Each 5 µg/m3 increase in PM2·5 was associated with an increase in hospital admission rates of 0·62% (95% CI 0·23-1·02) for depression, 0·77% (0·11-1·44) for schizophrenia, and 1·19% (0·49-1·90) for bipolar disorder; each 5 parts per billion (ppb) increase in NO2, meanwhile, was linked to an increase in hospital admission rates of 0·35% (95% CI 0·03-0·66) for depression and 0·64% (0·20-1·08) for schizophrenia. No such associations were found with warm season temperature. INTERPRETATION: In the US Medicare population, short-term exposure to elevated concentrations of PM2·5 and NO2 and cold season ambient temperature were significantly associated with an increased risk of hospital admissions for psychiatric disorders. Considering the increasing burden of psychiatric disorders in the US population, these findings suggest that intervening on air pollution and ambient temperature levels through stricter environmental regulations or climate mitigation could help ease the psychiatric health-care burden. FUNDING: US National Institute of Environmental Health Sciences, US Environmental Protection Agency, and US National Institute on Aging.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Idoso , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Estudos Cross-Over , Hospitais Psiquiátricos , Humanos , Medicare , Dióxido de Nitrogênio/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Temperatura , Estados Unidos/epidemiologia
20.
Environ Res Lett ; 17(3)2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35273649

RESUMO

Background: Environmental risk factors for psychiatric health are poorly identified. We examined the association between air pollution and psychiatric symptoms, which are often precursors to the development of psychiatric disorders. Methods: This study included 570 participants in the US Veterans Administration (VA) Normative Aging Study and 1,114 visits (defined as an onsite follow-up at the VA with physical examination and questionnaires) from 2000-2014 with information on the Brief Symptom Inventory (BSI) to assess their psychiatric symptom levels. Differences in the three BSI global measures (Global Severity Index - GSI, Positive Symptom Distress Index - PSDI and Positive Symptom Total - PST) were reported per interquartile (IQR) increase of residential address-specific air pollutants levels (fine particulate matter - PM2.5, ozone - O3, nitrogen dioxide - NO2) at averages of 1 week, 4 weeks, 8 weeks and 1 year prior to the visit using generalized additive mixed effects models. We also evaluated modification by neighborhood factors. Results: On average, among the NAS sample (average age, 72.4 yrs. (standard deviation: 6.7 yrs.)), an IQR increase in 1- and 4- week averages of NO2 before visit was associated with a PSDI T score (indicator for psychiatric symptom intensity) increase of 1.60 (95% Confidence Interval (CI): 0.31, 2.89), 1.71 (95% CI: 0.18, 3.23), respectively. Similarly, for each IQR increase in 1- and 4-week averages of ozone before visit, PSDI T-score increased by 1.66 (95% CI: 0.68, 2.65), and 1.36 (95% CI: 0.23, 2.49), respectively. Stronger associations were observed for ozone and PSDI in low house value and low household income areas. No associations were found for PM2.5. Conclusions: Exposure to gaseous air pollutants was associated with higher intensity of psychiatric symptoms among a cohort of older men, particularly in communities with lower socio-economic or housing conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA